Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Environ Health ; 20(1): 65, 2021 05 27.
Article in English | MEDLINE | ID: covidwho-1496182

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) and other dementias currently represent the fifth most common cause of death in the world, according to the World Health Organization, with a projected future increase as the proportion of the elderly in the population is growing. Air pollution has emerged as a plausible risk factor for AD, but studies estimating dementia cases attributable to exposure to fine particulate matter (PM2.5) air pollution and resulting monetary estimates are lacking. METHODS: We used data on average population-weighted exposure to ambient PM2.5 for the entire population of Sweden above 30 years of age. To estimate the annual number of dementia cases attributable to air pollution in the Swedish population above 60 years of age, we used the latest concentration response functions (CRF) between PM2.5 exposure and dementia incidence, based on ten longitudinal cohort studies, for the population above 60 years of age. To estimate the monetary burden of attributable cases, we calculated total costs related to dementia, including direct and indirect lifetime costs and intangible costs by including quality-adjusted life years (QALYs) lost. Two different monetary valuations of QALYs in Sweden were used to estimate the monetary value of reduced quality-of-life from two different payer perspectives. RESULTS: The annual number of dementia cases attributable to PM2.5 exposure was estimated to be 820, which represents 5% of the annual dementia cases in Sweden. Direct and indirect lifetime average cost per dementia case was estimated to correspond € 213,000. A reduction of PM2.5 by 1 µg/m3 was estimated to yield 101 fewer cases of dementia incidences annually, resulting in an estimated monetary benefit ranging up to 0.01% of the Swedish GDP in 2019. CONCLUSION: This study estimated that 5% of annual dementia cases could be attributed to PM2.5 exposure, and that the resulting monetary burden is substantial. These findings suggest the need to consider airborne toxic pollutants associated with dementia incidence in public health policy decisions.


Subject(s)
Dementia , Environmental Exposure , Environmental Pollutants , Particulate Matter , Aged , Aged, 80 and over , Cost of Illness , Dementia/economics , Dementia/epidemiology , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Environmental Exposure/economics , Environmental Pollutants/adverse effects , Environmental Pollutants/analysis , Environmental Pollutants/economics , Humans , Incidence , Middle Aged , Particulate Matter/adverse effects , Particulate Matter/analysis , Particulate Matter/economics , Quality of Life , Sweden/epidemiology
3.
Int J Epidemiol ; 49(5): 1443-1453, 2020 10 01.
Article in English | MEDLINE | ID: covidwho-1066328

ABSTRACT

BACKGROUND: While the COVID-19 outbreak in China now appears suppressed, Europe and the USA have become the epicentres, both reporting many more deaths than China. Responding to the pandemic, Sweden has taken a different approach aiming to mitigate, not suppress, community transmission, by using physical distancing without lockdowns. Here we contrast the consequences of different responses to COVID-19 within Sweden, the resulting demand for care, intensive care, the death tolls and the associated direct healthcare related costs. METHODS: We used an age-stratified health-care demand extended SEIR (susceptible, exposed, infectious, recovered) compartmental model for all municipalities in Sweden, and a radiation model for describing inter-municipality mobility. The model was calibrated against data from municipalities in the Stockholm healthcare region. RESULTS: Our scenario with moderate to strong physical distancing describes well the observed health demand and deaths in Sweden up to the end of May 2020. In this scenario, the intensive care unit (ICU) demand reaches the pre-pandemic maximum capacity just above 500 beds. In the counterfactual scenario, the ICU demand is estimated to reach ∼20 times higher than the pre-pandemic ICU capacity. The different scenarios show quite different death tolls up to 1 September, ranging from 5000 to 41 000, excluding deaths potentially caused by ICU shortage. Additionally, our statistical analysis of all causes excess mortality indicates that the number of deaths attributable to COVID-19 could be increased by 40% (95% confidence interval: 0.24, 0.57). CONCLUSION: The results of this study highlight the impact of different combinations of non-pharmaceutical interventions, especially moderate physical distancing in combination with more effective isolation of infectious individuals, on reducing deaths, health demands and lowering healthcare costs. In less effective mitigation scenarios, the demand on ICU beds would rapidly exceed capacity, showing the tight interconnection between the healthcare demand and physical distancing in the society. These findings have relevance for Swedish policy and response to the COVID-19 pandemic and illustrate the importance of maintaining the level of physical distancing for a longer period beyond the study period to suppress or mitigate the impacts from the pandemic.


Subject(s)
COVID-19 , Communicable Disease Control , Health Care Costs/trends , Health Services Needs and Demand , Mortality/trends , COVID-19/economics , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control/methods , Communicable Disease Control/statistics & numerical data , Epidemiological Monitoring , Health Services Needs and Demand/organization & administration , Health Services Needs and Demand/trends , Humans , Models, Theoretical , Patient Isolation , Physical Distancing , SARS-CoV-2 , Sweden/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL